Agiliza tareas tediosas con nuestros servicios de inteligencia artificial.
Cómo funciona
El ciclo de vida de un proyecto de inteligencia artificial incluye recolectar datos, prepararlos para su procesamiento, entrenar y evaluar un modelo, desplegarlo, y monitorizarlo.
Recolectar datos
Entrenamiento
Desplegar modelo
Monitoreo
Construimos modelos de IA para atender los escenarios más demandantes. Necesites precisión, velocidad, o explicabilidad, tenemos la experiencia para conseguirlo.
Utiliza cámaras para identificar distintos tipos de defectos mediante algoritmos de IA. Estos algoritmos pueden entrenarse para identificar una amplia gama de problemas, como arañazos, abolladuras, piezas desalineadas o colores incorrectos.
Los modelos de IA para imágen medica pueden analizar radiografías, tomografías computarizadas y resonancias magnéticas, lo que mejora la precisión de los diagnósticos, reduce la carga de trabajo de los profesionales sanitarios y agiliza la detección precoz.
La IA puede entrenarse para identificar caras. Esta tecnología tiene una grán precisión, se ha convertido en una opción popular para una amplia gama de aplicaciones como la seguridad, la identificación personal o el marketing.
Text classification involves automatically assigning a block of text to an appropriate category. It is one of the most studied areas of NLP, with many examples such as user sentiment analysis, news categorization, or spam detection.
NLP AI can answer questions based on domain-specific context. These systems work by extracting information from a pre-defined knowledge base, and generating answers based on the processed text. One popular example is frequently-asked-questions chatbots, they can provide automated answers based on a text chunk describing the targeted domain.
AI can be trained to identify specific faces in images. As the technology has become more accurate and widely available, it has become a popular choice for a wide range of applications such as security, personal identification, or marketing.
Analysis of popular sensors for predictive maintenance can be automated using machine learning models. AI can analyze time series such as vibration data, temperature data, and pressure data, and generate alerts indicating when a component is likely to fail.
Medical image analysis can be automated using machine learning algorithms. AI can interpret medical images, such as X-rays, CT scans, and MRIs, resulting in improved diagnosis accuracy, reduced workload for healthcare professionals, and streamlined early detection.
Machine learning can generate predictions based on historical time series data. This type of analysis can be applied to many tasks such as sales forecasting, financial forecasting, weather forecasting, demand forecasting, or resource planning.
Contáctanos y desarrollaremos una solución a medida con IA, aplicaciones web, o IoT.
Reserva una consulta gratuita